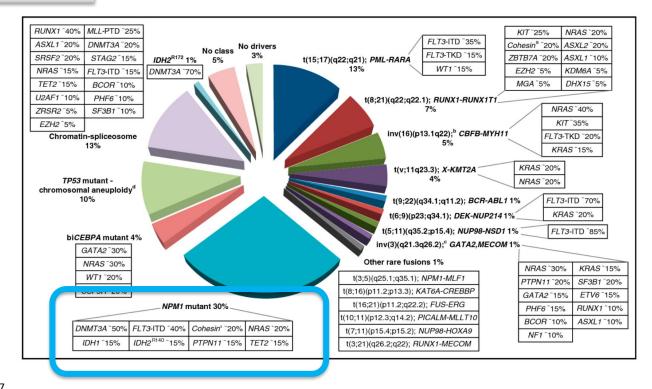


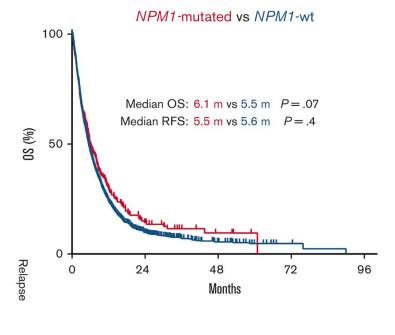
Drugs In Hematology

President: Pier Luigi Zinzani
Co-President: Michele Cavo


Bologna, Royal Hotel Carlton January 15-17, 2024

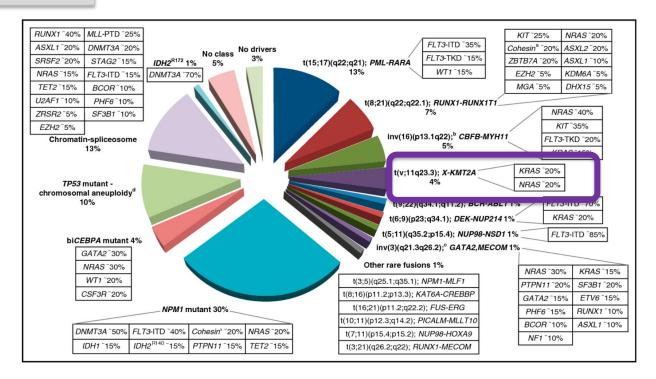
Disclosures of CRISTINA PAPAYANNIDIS

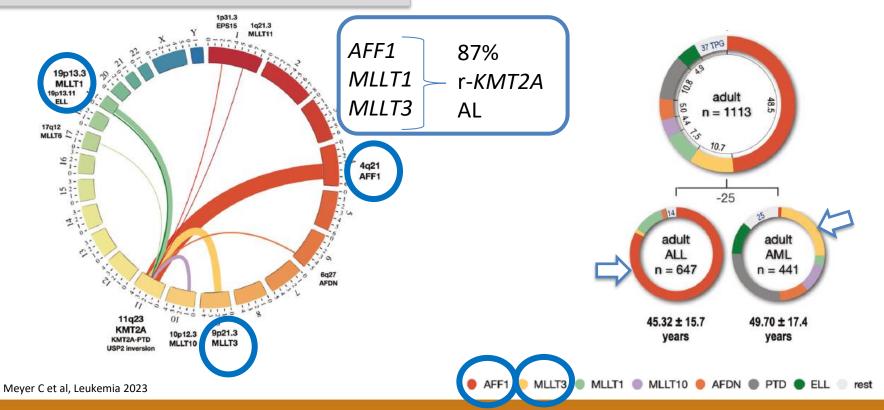
Company name	Research support	Employee	Consultant	Stockholder	Speakers bureau	Advisory board	Other
Abbvie						х	Х
Astellas						x	x
Servier							х
Menarini							X
BMS							X
Pfizer						X	X
Amgen							X
Janssen						X	
GSK						х	
Blueprint						х	
Incyte						Х	x
Paladin Labs Inc							x
Jazz pharmaceuticals						х	
Novartis						х	
Delbert Laboratoires						х	


Menin inhibitors: for which patients?

Menin inhibitors: for which patients?

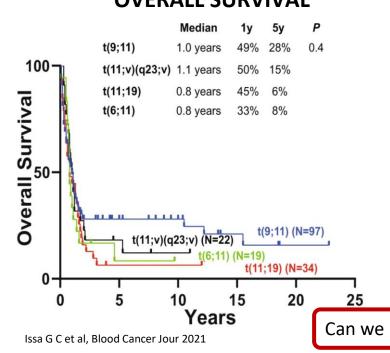
Risk category†	Genetic abnormality
Favorable	t(8;21)(q22;q22.1)/RUNX1::RUNX1T1†,‡ inv(16)(p13.1q22) or t(16;16)(p13.1;q22)/ CBFB::MY1T1†,‡ Mutate J NPM1†,\$ without FLT3-ITD bZIP in-hame mutated CEBPA
Intermediate	 Mutated NPM1†,§ with FLT3-ITD Wild-type NPM1 with FLT3-ITD (without adverse-risk generic lesions) t(9;11)(p21.3;q23.3)/MLLT3::KMT2A†,¶ Cytogenetic and/or molecular abnormalities not classified as favorable or adverse
Adverse	 t(6;9)(p23.3;q34.1)/DEK::NUP214 t(v;11q23.3)/KMT2A-rearranged# t(9;22)(q34.1;q11.2)/BCR::ABL1 t(8;16)(p11.2;p13.3)/KAT6A::CREBBP inv(3)(q21.3q26.2) or t(3;3)(q21.3;q26.2)/GATA2, MECOM(EVI1) t(3q26.2;v)/MECOM(EVI1)-rearranged -5 or del(5q); -7; -17/abn(17p) Complex karyotype,** monosomal karyotype†† Mutated ASXL1, BCOR, EZH2, RUNX1, SF3B1, SRSF2, STAG2, U2AF1, and/or ZRSR2‡‡ Mutated TP53a


R/R NPM1-mut OVERALL SURVIVAL

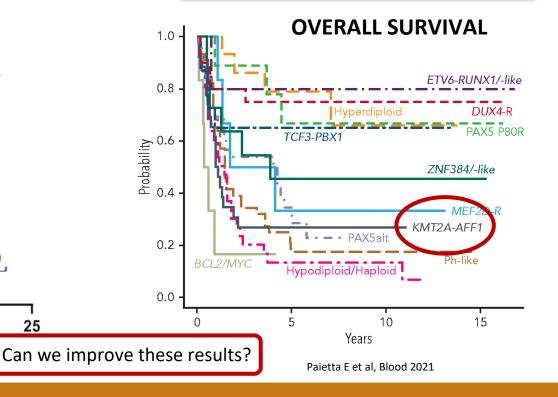

Dohner H et al., Blood 2022

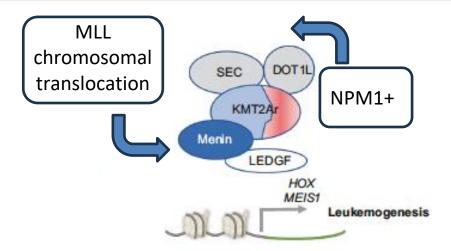
Issa GC et al., Blood Adv 2023

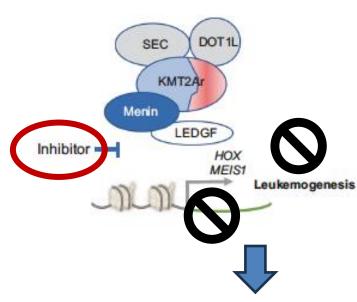
Menin inhibitors: for which patients?



Fusion partners genes vary according to age and phenotype




OVERALL SURVIVAL



r-KMT2A ALL outcome

Menin is an essential oncogenic cofactor for leukemogenesis driven by NPM1 mut or r-KMT2A

Growth arrest and differentiation

Menin inhibitors in clinical trials

Clinical trial/status	Drug	Dosing	Min. age	Phase 2 expansion cohorts
AUGMENT-101 NCT04065399	SNDX-5613	PO BID	30 d	A. ALL or MPAL with <i>KMT2Ar</i> B. AML with <i>KMT2Ar</i> C. AML with <i>NPM1c</i>
KOMET-001 NCT04067336	KO-539	PO daily	18 yr	A. AML with <i>KMT2Ar</i> B. AML with <i>NPM1c</i>
NCT04752163	DS-1594	PO BID	18 yr	A. <i>KMTAr</i> leukemia: single agent B. AML with <i>NPM1c</i> : single agent C. AML with <i>KMT2Ar</i> or <i>NPM1c</i> : in combination with azacytidine and venetoclax D. ALL with <i>KMT2Ar</i> : in combination with mini-HCVD
NCT04811560	JNJ- 75276617	PO daily	18 yr	_
	BMF-219	PO	-	_

AUGMENT-101 Phase 2 Study Design

Revumenib RP2D 163 mg (95 mg/m 2 if body weight <40 kg) q12h oral **Patients** + a strong CYP3A4i in 28-day cycles aged ≥30 days KMT2Ar acute leukemia with R/R acute leukemia NPM1m AML Still enrolling, not included in this analysis

- **Primary endpoint**
 - CR+CRh rate*
- Key secondary efficacy endpoints
 - CRc
 - ORR

A planned interim analysis of patients with KMT2Ar acute leukemia was conducted

*CR+CRh rate >10% in adult evaluable population considered lower efficacy bound

AML, acute myeloid leukemia; CR, complete remission; CRc, CR composite (CR+CRh+CRp+CRi); CRh, CR with partial hematologic recovery; CR, CR with incomplete hematologic recovery; CRp, CR with incomplete platelet recovery; CYP3A4i, cytochrome P450 3A4 inhibitor; KMT2Ar, histone-lysine N-methyltransferase 2A rearrangements; NPM1m, nucleophosmin 1—mutated: ORR, overall response rate: q12h, every 12 hours; RP2D, recommended phase 2 dose; R/R, relapsed/refractory.

Patient Demographics

Parameter	Efficacy population (n=57)	Safety population (n=94) ^a
Median age, y (range)	34.0 (1.3–75)	37.0 (1.3–75)
Age <18 y, n (%)	13 (23)	23 (25)
Age ≥18 y, n (%)	44 (77)	71 (76)
Sex, n (%)		
Female	33 (58)	56 (60)
Race, n (%)		
White	43 (75)	68 (72)
Non-White	10 (18)	14 (15)
Unknown	4 (7)	12 (13)

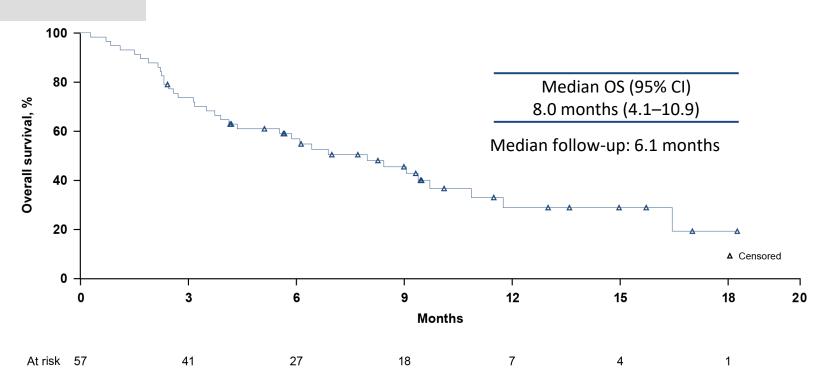
Data cutoff: July 24, 2023. ^aDefined as patients with KMT2Ar acute leukemia having received at least 1 dose of revumenib.

Baseline characteristics

49 (86) 7 (12)	78 (83)
i i i	78 (83)
7 (12)	- \ /
, (+ -)	14 (15)
1 (2)	2 (2)
5 (9)	7 (7)
9 (16)	12 (13)
4 (7)	5 (5)
14 (25)	18 (19)
2 (1–11)	2 (1–11)
17 (30)	25 (27)
14 (25)	28 (30)
26 (46)	41 (44)
41 (72)	61 (65)
26 (46)	47 (50)
	5 (9) 9 (16) 4 (7) 14 (25) 2 (1–11) 17 (30) 14 (25) 26 (46) 41 (72)

ALL, acute lymphoblastic leukemia; AML, acute myeloid leukemia; FLT3, fms-related tyrosine kinase 3; HSCT, hematopoietic stem cell transplant; KMT2Ar, histone-lysine N-methyltransferase 2A rearrangements; MPAL, mixed phenotype acute leukemia; RAS, rat sarcoma virus.

Response


Parameter	Efficacy population (n=57)	Parameter	Efficacy population (n=57)
ORR, n (%)	36 (63)	Best response, n (%)	
CR+CRh rate, n (%)	13 (23)	CR	10 (18)
95% CI	12.7–35.8	CRh	3 (5)
		CRi	1 (1.8)
P value, 1-sided	0.0036	_ CRp	11 (19)
CRc	25 (44)	MLFS	10 (18)
95% CI	30.7–57.6	PR	1 (1.8)
Negative MRD status ^a		PD	4 (7)
CR+CRh	7/10 (70)	No response	14 (25)
CRc	15/22 (68)	Other ^b	3 (5)

Data cutoff: July 24, 2023. aMRD done locally; not all patients had MRD status reported. bIncludes patients without postbaseline disease assessment.

Responses observed across KMT2A rearrangements

		Summary of ORR	Summary of CR+CRh rate	
KMT2A rearrangement/ translocation	n/N	ORR (95% CI)	n/N	CR+CRh rate (95% CI)
9;11	10/11	91 (58.7–99.8)	2/11	18 (2.3–51.8)
11;19	7/13	54 (25.1–80.8)	2/13	15 (1.9–45.4)
10;11	5/7	71 (29.0–96.3)	2/7	29 (3.7–71.0)
6;11	5/7	71 (29.0–96.3)	2/7	29 (3.7–71.0)
4;11	2/2	100 (15.8–100.0)	0/2	0 (0.0–84.2)
1;11	0/2	0 (0.0–84.2)	0/2	0 (0.0–84.2)
11;16	1/1	100	0/1	0
11;22	1/1	100	1/1	100
Unknown KMT2A fusion partner	5/13	39 (13.9–68.4)	4/13	31 (9.1–61.4)

Overall Survival

*3 additional patients remained eligible to initiate revumenib after HSCT at the time of data cutoff.

Duration of response

Parameter	Patients achieving CR+CRh (n=13)
Median time to CR+CRh, mo (range)	1.87 (0.9-4.6)
Median duration of CR+CRh, months (95% CI)	6.4 (3.4–NR)
Proceeded to HSCT, n (%)	14/36 (39)
Proceeded to HSCT in CR or CRh	6/14 (43)
Proceeded to HSCT in MLFS or CRp	8/14 (57)
Restarted revumenib post HSCT, n (%)	7/14 (50)*
Data cutoff: July 24, 2023	

CR, complete remission; CRh, CR with partial hematologic recovery; CRp, CR with incomplete platelet recovery; HSCT, hematopoietic stem cell transplant; MLFS, morphological leukemia-free state; NR, not reached.

Safety population

New Drugs in **Hematology**

Revumenib safety profile (I)

	(n=94) ^a
All terms	TEAEs
Any grade, n (%)	93 (99)
≥Grade 3, n (%)	86 (92)
Serious AE, n (%)	72 (77)
AEs leading to:	
Dose reduction	9 (10)
Discontinuation	12 (13)
Death	14 (15)

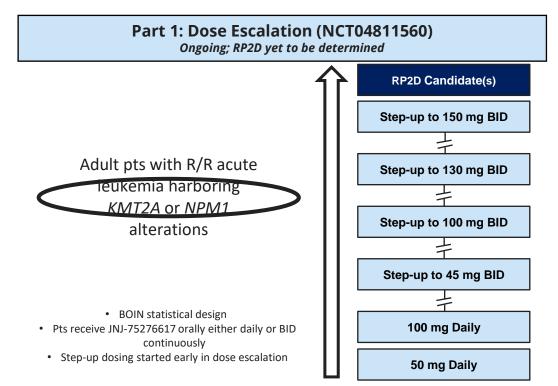
Data cutoff: July 24, 2023. Defined as patients with KMT2Ar acute leukemia having received at least 1 dose of revumenib.

Revumenib safety profile (II)

Any grade TEAEs that occurred in ≥25% patients

Grade ≥3 TEAEs that occurred in ≥10% patients

, 0	·		•
All terms, n (%)	Safety population (n=94) ^a	All terms, n (%)	Safety population (n=94) ^a
Nausea	42 (45)	Febrile neutropenia	35 (37)
Febrile neutropenia	36 (38)	Decreased neutrophil count	15 (16)
Diarrhea	33 (35)	Decreased white blood cell count	15 (16)
Vomiting	29 (31)	Decreased platelet count	14 (15)
G	• •	Anemia	17 (18)
Differentiation syndrome	26 (28)	Differentiation syndrome	15 (16)
Hypokalemia	26 (28)	QTc prolongation	13 (14)
Epistaxis	25 (27)	Sepsis	11 (12)
QTc prolongation	24 (26)		10 (11)


Data cutoff: July 24, 2023. aDefined as patients with KMT2Ar acute leukemia having received at least 1 dose of revumenib.

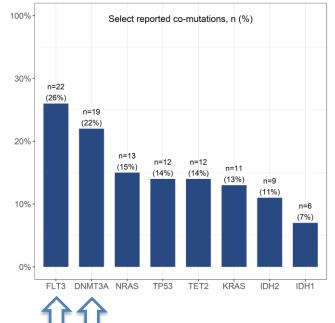
No patients discontinued due to differentiation syndrome, QTc prolongation, or cytopenias

Menin inhibitors in clinical trials

Clinical trial/status	Drug	Dosing	Min. age	Phase 2 expansion cohorts
AUGMENT-101	SNDX-5613	PO BID	30 d	A. ALL or MPAL with KMT2Ar
NCT04065399				B. AML with KMT2Ar
				C. AML with NPM1c
KOMET-001	KO-539	PO daily	18 yr	A. AML with KMT2Ar
NCT04067336				B. AML with NPM1c
NCT04752163	DS-1594	PO BID	18 yr	A. KMTAr leukemia: single agent
				B. AML with NPM1c: single agent
				C. AML with <i>KMT2Ar</i> or <i>NPM1c</i> : in combination with azacytidine and venetoclax
				D. ALL with <i>KMT2Ar</i> : in combination with mini-HCVD
NCT04811560	JNJ- 75276617	PO daily	18 yr	_
	BMF-219	PO	_	_

JNJ-75276617 Ph1 Study design

Primary objective:


Safety/RP2D

Secondary objectives:

Preliminary clinical activity, PK and PD

Demographics and Baseline characteristics

		All Treated (N=86)
	Age, median (range), years	59.5 (18-85)
7	Female, n (%)	49 (57)
	Male, n (%)	37 (43)
k	Diagnosis, n (%)	
	AML	78 (91)
	ALL	4 (4.5)
	Other acute leukemia	4 (4.5)
	Prior therapy	
	Lines of prior therapy, median (range)	3.0 (1-7)
	Prior HSCT, n (%)	20 (23)
V	Prior venetoclax therapy, n (%)	52 (61)
	KMT2A alteration, n (%)	50 (58)
	Translocation	36 (72)
	Amplification	5 (10)
	Partial tandem duplication	5 (10)
	Other/Unknown	4 (8)
	NPM1 alteration, n (%)	36 (42)
	Insertion/Frameshift	27 (75)
	Translocation	6 (17)
	Other/Unknown	3 (8)

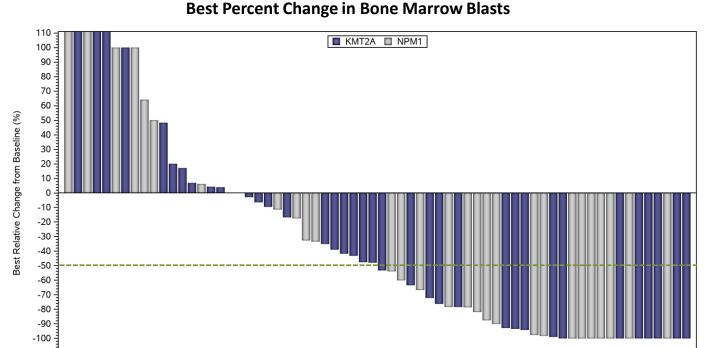
cut-off date: October 25, 2023

Jabbour E et al, ASH 2023

Safety profile

	TRAEs Observed in ≥5% of Pts (N=86)	All Grades	Grade ≥3	
	Total, n (%)	45 (52)	26 (30)	
	Differentiation syndrome (DS)	10 (12)	4 (5)	
7	Neutropenia	10 (12)	9 (11)	
	Nausea	7 (8)	0 (0)	
	Thrombocytopenia	7 (8)	5 (6)	
	Anemia	6 (7)	4 (5)	
	Fatigue	5 (6)	0 (0)	
	Arthralgia	4 (5)	0 (0)	

Symptoms of differentiation syndrome are not included in this summary; AEs were graded according to CTCAE v5.0


DS is only DLT observed in ≥2 pts

- 1 Gr 5 DS; BID and step-up dosing implemented
- No dose dependent increase in incidence or severity
- Median onset = Day 8 (2-19 days)

DLTs observed in 7 (8%) of pts

- One G3 QT prolongation AE observed
- No other QT-related AEs observed on study

Change in leukemic burden

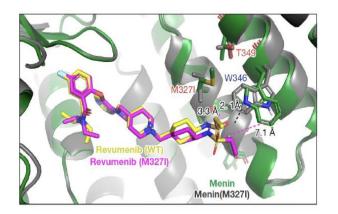
- 66 pts evaluable
 - 37 KMT2A
 - 29 *NPM1*
- 47 (71%) pts with reduction in leukemic burden
- 33 (50%) pts with ≥50% reduction
- Observed in both KMT2A and NPM1

20 Non-evaluable pts: Ongoing in Cycle 1, n=2; D/C for AE, n=13; D/C for PD, n=2; D/C subject refused, n=2; D/C physician discretion, n=1

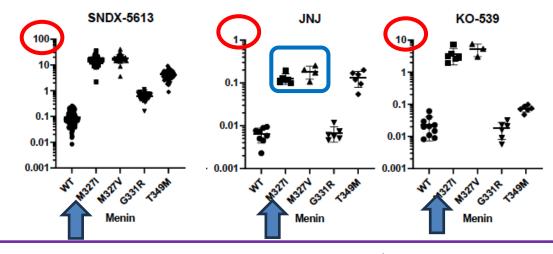
Note: Bars are only presented for pts where a measurable change from baseline is found in the data; Each bar represents a unique pt; Five pts had best relative change from baseline of >100%.

Preliminary clinical activity

Efficacy subset	45-130 mg BID Cohorts (N=33, acute leukemia)
ORR (≥PR), n (%)	15 (46)
Ongoing responders	8 (53)
Best response, n (%)	
CR/CRh/CRi	9 (27)
CR/CRh	7 (21)
CR	6 (18)
MLFS/PR	6 (18)
Median time to first response, mos	1.8 (0.9-3.3)
Median duration of response, mos	6.5 (1.0-NE)
	KMT2A (N=19) NPM1 (N=14)
ORR, n (%)	8 (42) 7 (50)

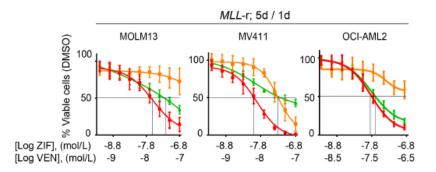

- 3/6 of CR were MRD negative
- 1 responder discontinued for HSCT
- 2 pts in ≥ Cycle 12
- Similar response rates observed in KMT2A and NPM1
- RP2D not yet determined

Responses were investigator-assessed per modified ELN 2017 recommendations (AML) or ESMO 2016 with NCCN 2020 modifications (ALL)

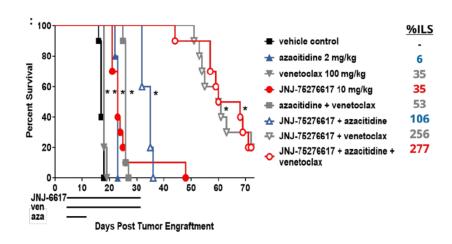

Data cut-off date: October 25, 2023

Jabbour E et al, ASH 2023

Why do patients relapse? *MEN1* mutations generate structural perturbations that impact small-molecule binding


Loss of hydrogen bond interactions between revumenib in the M327I mutant and the menin protein

- Binding affinities of all compounds reduced by I/V mutations at M327
 - T349M reduces binding for most chemotypes
- G331R change has variable effects across chemotypes


Preclinical data support menin inhibitors combinations in r-KMT2A leukemia

Ziftomenib

- Ziftomenib
- Venetoclax
- Combination

JNJ-75276617

Ongoing menin inhibitors combination clinical trials in ALL and AML

	Phase	Age	Schedule	Setting	Sites	NCT
Ziftomenib	1-11	Infants	Chemo+Blina+Ziftomenib	Frontline ALL	US	NCT05848687
	1	Adult	Chemo+Ziftomenib/Aza+Ven+Ziftomenib	Frontline AML	US	NCT05735184
	1	Adult	Chemo+Ziftomenib	R/R AML	US	NCT06001788
Revumenib	II	Children	Chemo+Revumenib	R/R ALL	US	NCT05761171
	1	Adult	Chemo+Revumenib	R/R ALL	US	NCT05326516
	I-II	Pediatric/AYA	Aza+Ven+Revumenib	R/R AML	US	NCT06177067
	I	Adult	Chemo+Revumenib	Frontline AML	TBD	NCT05886049
JNJ-75276617	I	Pediatric/AYA	Chemo+JNJ-75276617	R/R ALL R/R AML	EU+US	NCT05521087
	I	Adult	Chemo+JNJ-75276617/Aza+Ven+JNJ- 75276617	Frontline AML	EU+US+AUSTRALIA	NCT05453903
DS-1594b	1-11	Adult	DS-1594b+mini-HCVD DS-1594b+Aza+Ven	R/R ALL R/R AML	US	NCT04752163

Take home messages

- Targeting menin leads to complete remissions in both AML and ALL
- Safety profile is manageable (DS may occur in a limited proportion of patients)
- Resistance to Menin inhibitors may be mediated by acquired *MEN1* mutations, but the identification of other mechanisms is ongoing
- **Combination studies** in both AML and ALL with menin inhibitors and standard chemotherapy/HMAs+Ven are ongoing

cristina.papayannidis@unibo.it

M. Cavo
Antonio Curti
Chiara Sartor
Gianluca Cristiano
Jacopo Nanni
Stefania Paolini
Sarah Parisi
Letizia Zannoni
Federico Zingarelli
Andrea Davide Romagnoli
Federica Ardizzoia
Caterina Azzimondi

Francesca Bonifazi Mario Arpinati Enrico Maffini

Giovanni Martinelli Giovanni Marconi Simona Soverini Emanuela Ottaviani Carolina Terragna Cecilia Monaldi Valentina Robustelli Marina Martello Claudia Venturi Manuela Mancini Lorenza Bandini Nicoletta Testoni Carmen Baldazzi Gabriella Chirumbolo **Dorian Forte** Martina Barone Francesco Ingletto Manuel Cella Antonella Pagano